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Sliding-frequency filter systems are known to admit two families of accelerating solitons: high-amplitude
and low-amplitude families. Such equilibrium solutions are computed here, for a wide range of filter strengths,
as self-similar solutions having Airy function asymptotics. In a limited parameter region, the profile possesses
a secondary small hump. The high-amplitude solitons are found to be stable over a region of parameter space
which is here determined by the Evans function method, adjusted to Airy function asymptotics. The loss of
stability is due to a Hopf bifurcation.
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I. INTRODUCTION

Sliding-frequency filtering refers to a technique used to
control the noise growth in soliton-based optical communi-
cation systems. Real soliton-based systems require repeated
amplification to overcome material attenuation. The amplifi-
cation, in turn, introduces noise produced by spontaneous
emission. This noise may be suppressed by the use of one
filter in each amplification stage. The filtering is known to be
more effective if the peak frequency is slightly shifted from
one filter to the next, using a technique known as sliding-
frequency filtering.

The propagation of pulses over large distances in such
systems is governed by the following equation �1�:

iqZ + 1
2qTT + �q�2q = i�q + i���T + i�Z�2q , �1�

where q is the normalized complex envelope of the pulse, Z
and T are the normalized distance along the fiber and re-
tarded time, respectively, � and � are normalized and aver-
aged �over the amplifier distance� parameters for excess gain
and filter strength, and � is the normalized sliding rate.
Equation �1� admits steady profile solutions that evolve
along an accelerating time path, i.e., accelerating solutions.
This has been known since the time the technique was sug-
gested. Parameter regions of the existence and stability of
such solutions have been defined by numerical and experi-
mental results �2� and mainly compared with results from
perturbation approaches �3–5�. Such approaches were first
investigated by perturbing around the sech soliton solution of
the nonlinear Schrödinger equation �3,4�, but, more recently,
the zero-order ansatz was more general than the sech soliton
�5�. The general results obtained previously may be summa-
rized as follows. For fixed filter strength and sliding rate,
there is a lower gain threshold below which pulses do not
exist. Above this threshold, there are two families of solu-
tions differing in peak amplitude �or energy� and in velocity.
The low-amplitude family is unstable and the high-amplitude

family is stable up to an upper limit of gain which meets the
lower gain threshold for values of filter strength around 0.85
�2,4�.

In agreement with the existence of accelerating solutions,
Eq. �1� was recently reduced to an ordinary differential equa-
tion �ODE� using an accelerating similarity variable �6�.
Here we show that the asymptotics of the resulting ODE is
associated with Airy functions, a fact that is then used in Sec.
II to search for localized solutions. In Sec. III, we obtain the
stability eigenvalue problem whose asymptotics are also as-
sociated with Airy functions. The similarity of this stability
eigenvalue problem with the one arising for self-bending
photorefractive solitons permits us to apply an Evans func-
tion methodology similar to that in �7�. Hence, in Sec. IV, we
define a modified Evans function and apply the method to
find the stability eigenmodes focusing especially on those
that are responsible for the loss of stability exhibited by the
high-amplitude family of solutions. In Sec. V, direct numeri-
cal integration of Eq. �1� is used to confirm the stability
results obtained in the previous section.

II. EQUILIBRIUM SOLUTIONS

The accelerating solutions of Eq. �1� were recently related
to the accelerating similarity variable given by �=T
+ �� /2�Z2+bZ+�0 �with b and �0 arbitrary constants� �6�.
Introducing the ansatz q�Z ,T�=ei��Z,��W��� �with � real and
W complex� into Eq. �1� yields

��Z,�� = − ��Z + b�
Z2

2
+ �2Z3

6
+ c1 �2�

and

�1 + 4�2�W� + 2�1 + 2i��ibW�

+ 2�1 + 2i����� − i� + �W�2�W = 0, �3�

where c1 is an arbitrary constant. Applying the change of
variables

W��� = ��2�1 + 4�2��1/6w�y� ,
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�� = ��2�1 + 4�2��1/3y ,

transforms the ordinary differential Eq. �3� to

w� + 2�1 + 2i���iBw� + �y − i� + �w�2�w� = 0, �4�

where B= ��1/2�1+4�2��−2/3b and �= ��2�1+4�2��−1/3�. Per-
turbation around the function w�y�=� sech���y−yp��e−iBy

�where �2=−B2−2yp and yp is the peak position� show that
the permitted velocities B for a single-peak pulse should be
approximately equal to the negative roots of the following
cubic equation �3,6�:

4�B3 − 4�B − 1 = 0. �5�

Negative roots exist only for ��
3
4�1/3; one when the equal-

ity is satisfied and two in the general case.
For Eq. �4�, pulselike solutions must have w�y� and w��y�

tending to zero as �y�→	. Thus away from the pulse, Eq. �4�
may be approximated as

w� + 2�1 + 2i���iBw� + �y − i��w� = 0, �6�

to which we may apply the transformation given by

w�y� = W�z�exp�− iB�1 + 2i��y� �7�

and

z�y� = �2 + 4i��1/3�− y + i� − �1 + 2i��
B2

2
	 , �8�

thus yielding the Airy equation defined in the complex z
plane, namely

W� − zW = 0.

This result shows that solutions to the ODE �4� have Airy
function asymptotics. Under transformation �8�, the real do-
main for y is mapped into a line in the complex z plane,
inclined at angle 
= 1

3 arg�2+4i�� �the principal branch of
the cube root appearing in expression �8� is chosen� and
crossing the real axis at �4+16�2�1/6��−�B2� / sin 
. The
Airy functions that asymptotically tend to zero as �z�→	
depend on arg�z�. Standard theory of Airy functions defines
three functions Ai0�z�, Ai1�z�=Ai�ze−2�i/3�, and Ai−1�z�
=Ai�ze2�i/3�, and three 2� /3 sectors S0, S1, and S−1 �8�. For
z�Sj, only Aij�z� is exponentially decaying as �z�→	; Aij�z�
is known as the recessive solution in Sj. For pulselike solu-

FIG. 1. Pulse profile and chirp for Bs solutions.
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tions to Eq. �4�, the large positive and negative values of y
correspond to z values within the sectors S−1 and S0, so that
the appropriate recessive Airy solutions are Ai−1�z�y�� as
y→ +	 and Ai0�z�y�� as y→−	. Note that w�y� is obtained
from W�z� through Eq. �7�, whose exponential modulus is
exp�2�By� �with B�0 and �0�. Assuming that W�z� has
the exponential decay of Ai0�z�y�� as y→−	, w�y� also de-
cays exponentially, since the rate of exponential decay of
Ai0�z�y�� for large z�S0 is proportional to y3/2, which domi-
nates the linear rate of exponential growth introduced
through transformation �7�.

The numerical search for localized solutions to Eq. �4�
used the following shooting procedure. For fixed � and �,

we find the two negative roots of Eq. �5�, which we name B̄s

and B̄l �s and l stand for small and large absolute values,

respectively�. They constitute the starting estimates B̄ for B.
For each one, we follow Parker et al. �6� to estimate a loca-
tion ȳ1 on the left tail �ȳ1�yp� where w
�. Near ȳ1, the
solution w�y� should be well described by Ai0�z�y�� through
Eq. �7�. Thus at y= ȳ1, the initial conditions are

w�ȳ1� = c1Ai0�z�ȳ1��exp�− iB̄�1 + 2i��ȳ1� = � ,

w��ȳ1� = − c1 exp�− iB̄�1 + 2i��ȳ1� � ��2 + 4i��1/3Ai0��z�ȳ1��

+ iB̄�1 + 2i��Ai0�z�ȳ1��� .

We start a forward integration from ȳ1 and, after passing
through a maximum of �w�, we stop when a minimum of
�w�2+ �w��2 is reached. Then y1 and B are adjusted in order to
minimize �w�2+ �w��2 down to �2 or smaller. A similar shoot-
ing procedure could start at a location on the right tail, say
y= ȳ2. In this case, the initial conditions should use the ap-
propriate recessive Airy function at z�ȳ2� which is Ai−1�z�.

We have searched for pulse profiles containing a single
pulse throughout the region of the parameter space �� ,��
covering � from 0.005 to 2.0 and � from 3

4�1/3 to 3.5. The
lower boundary, ��

3
4�1/3, arises from the estimates of B

using the cubic Eq. �5�, based on sech profiles.
Results concerning Bs are described first. For values of �

up to 0.35, localized solutions are found right from the
boundary �= 3

4�1/3. However, for �0.35, existence re-
quires substantially larger � �see Fig. 4�. This deviation from
the existence curve predicted by perturbation theory was al-
ready found from approximately the same � value, by nu-
merical simulation of Eq. �1� using initial sech pulses �2�.
The upper boundary for existence is of little importance,
since the stability/instability threshold �see Sec. IV� is
reached for smaller � values. Hence, for ��0.5, pulses have
been constructed just in ��3.5. For larger �, the curve of
existence experiences a quick drop down to ��2.0 where it
remains while � increases up to 
2.0. For fixed �, the ab-
solute value of the velocity B decreases as � increases and
the profile peak amplitude increases with �. For small �, the
pulse profiles are very close to sech profiles, and the phase
has chirp which is close to a tanh behavior �Fig. 1�a��. How-
ever, as � increases, the deviations from this behavior be-
come more noticeable. The pulse profiles become asymmet-

ric and thinner than the approximating sech pulse of �3�. This
asymmetry is more evident for small values of � with �� ,��
close to the existence boundary but, for ��0.88, it is present
for values of � up to the stability boundary. Whenever the
shooting method described above starts at the left-hand side,
it produces these asymmetrical pulses with a pronounced
right tail. However, whenever these pulses are used as initial
conditions for the full numerical integration of Eq. �1�, the
output profiles are found to be more asymmetric or even to
have a secondary hump on the right. The disagreement be-
tween the obtained self-similar solution and the actual equi-
librium pulse is due to the shooting strategy which mini-
mizes �w�2+ �w��2 instead of searching for a right tail behavior
coincident with the behavior of Ai−1�z�. The shooting
method was then improved in order to compute such equi-
librium solutions. The procedure involved a first estimation
of B and y2 by the method described above and a second
estimation of y2 using backward integration which uses
Ai−1�z�y2�� and allows the existence of two humps. Finally, a
further optimization of B and y2 is achieved using backward
integration and minimization of �w�2+ �w��2 at the left tail.
Figures 1�b� and 1�c� show profiles and chirps of two solu-
tions obtained by this improved shooting technique. Figure
1�d� shows one self-similar solution for � and � outside the
region of stability. The profile is more symmetric than the

FIG. 2. Pulse profile and chirp for two Bl solutions:
�a� �=0.08, �=0.33, and B=−1.40 and �b� �=1.0, �=1.5, and
B=−1.18.

EXISTENCE AND STABILITY OF ACCELERATING… PHYSICAL REVIEW E 71, 066611 �2005�

066611-3



ones in Figs. 1�b� and 1�c� and much thinner than the sech
profile, but is shown later, by both the Evans function
method and by full numerical integration of Eq. �1�, to be
unstable. The asymmetry, the secondary hump, and also the
numerical difficulties occurring for parameter values in that
region arise from the fact that, in the z plane, the right tail
approaches the negative semiaxis. There Ai−1�z� is more
slowly decreasing and in some directions exhibits a small
hump. Moreover, there Ai1�z� is slowly growing and may be
wrongly contributing to the right tail behavior produced by
the first shooting strategy.

The existence pattern of solutions corresponding to Bl
comprises two distinct regions: One region for � smaller
than 0.11, which is limited from above by a descending ����
curve, and another region for � larger than 0.15, which is
also limited but from below by a descending ���� curve. The
absence of solutions occurs for �� ,�� values such that z�y2�
lies in a region of the complex plane where no Airy solution
is rapidly decreasing to the left, i.e., z�y2� lies in the vicinity
of the negative real axis. The solutions found in the region of
smaller � are reasonably close to the sech profile and tanh
chirp �see Fig. 2�a��. However, the typical solution of the
region of larger � is very asymmetric �see Fig. 2�b��. Its

shape suggests the existence of multihump solutions which
have not been further investigated.

III. NORMAL MODE STABILITY

The stability eigenvalue problem for solutions w�y� to Eq.
�4� is obtained by introducing into the evolution equation �1�
an expression composed of the equilibrium solution w�y�
plus a small complex perturbation r�Z ,y�, namely

q�Z,T� = exp�i����2�1 + �2��1/6�w�y� + r�Z,y�� .

This yields

i�rZ� +
ryy

2�1 + 2i��
+ iBry + �y − i��r + w2r* + 2�w�2r = 0,

�9�

where Z�=�Z. Then we seek solutions r in the form
r�Z� ,y�=u�y�ei�Z�+v*�y�e−i�*Z� and arrive at

L�u

v
 = ���u

v
 , �10�

where L is the matrix operator

�
�yy

2�1 + 2i��
+ iB�y + y − i� + 2�w�2 w2

− �w*�2 −
�yy

2�1 − 2i��
+ iB�y − y − i� − 2�w�2� .

Normal mode stability is verified if the above eigenvalue
problem has no eigenvalues with negative imaginary part.
This condition is analyzed using the Evans function tech-
nique of Sec. IV.

The evolution equation �1� is found to have three invari-
ances which should relate to a zero eigenvalue for Eq. �10�
having multiplicity equal to 3. The invariances occur under
constant change of phase, under translations in T and under
the mapping �Z ,T ,q�� �Z� ,T� ,q�� with

Z� = Z + �, T� = T − �Z� − 1
2��2,

q��Z�,T�� = q�Z,T�exp�i��� 1
2��Z + 1

6��2 − T�� ,

where � is a real parameter �and for which �=T+ 1
2�Z2+bZ

+�0 and W��� are invariants�. The associated zero modes are
�w −w*�T, (w� �w*��)T, and �wB wB

*�T. However, if the solu-

tion w is the localized single-humped profile determined in
Sec. II, the parameter b �or B� is not arbitrary but may only
take one or two discrete values. Consequently, the derivative
wB is undefined and we expect to obtain results consistent
with only two zero eigenfunctions �indeed the condition that
�q� decays as T→ ±	 with q localized for all Z is not invari-
ant under the mapping corresponding to the third invariance�.
However, if we were to consider general �possibly nonlocal-
ized� solutions of Eq. �4� so that B may be taken arbitrarily,
the zero eigenvalue would have multiplicity equal to 3.

IV. EVANS FUNCTION METHOD

The pulselike solutions to Eq. �4� are functions decaying
rapidly in both directions. Thus, as y→ ±	 the operator L in
Eq. �10� may be replaced by its asymptotic form given by

L	 =�
�yy

2�1 + 2i��
+ iB�y + y − i� 0

0
− �yy

2�1 − 2i��
+ iB�y − y − i�� .
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After a manipulation similar to that applied to the linearized
form of Eq. �4�, the asymptotic eigenvalue problem is shown
to be equivalent to two decoupled Airy equations. In fact,
introducing the new variables

U�z+� = u�y�exp�iB�1 + 2i��y� , �11�

V�z−� = v�y�exp�− iB�1 − 2i��y� , �12�

and

z±�y� = �2 ± 4i��1/3�− y ± i� ± �� −
B2

2
� i�B2 , �13�

we arrive at

U� − z+U = 0, V� − z−V = 0.

This result permits us to use the recently implemented Evans
function methodology �7� to investigate the eigenvalues of
Eq. �10�. A relevant eigenvalue of Eq. �10� is a value � for
which the system has a localized bounded solution. In turn, a
localized solution to Eq. �10� exists whenever the stable
manifold �spanned by the right-decaying solutions to Eq.
�10�� and the unstable manifold �spanned by the left-
decaying solutions� have nonempty intersection. As the
asymptotic system is equivalent to a system of Airy equa-
tions, these right- and left-decaying solutions should relate to
appropriate recessive Airy functions. Figure 3 shows corre-
sponding typical locations of z+ and z− when y takes values
in the real domain. They are lines of inclination ±
, where
the angle 
 is the same as described in Sec. II given by 

= 1

3 arg�2+4i��. As the imaginary part of � is changed, the
two lines move to parallel positions. Changing the real part
of � only moves z± along the respective line. The portions of
these lines �z±�y2� ,z±�y1�� corresponding to the numerical in-

tegration range we designate as profile domains. They move
along the same line if Re��� is changed and move to a par-
allel location if, otherwise, Im��� is changed. Note that the
intercepts of the z± lines with the real axis coincide, but
depend upon the imaginary part of � and do not necessarily
occur on the negative semiaxis as in the example shown in
Fig. 3. As y→−	, z− and z+ lie in S0. As y→ +	, z− lies in
S1 and z+ in S−1. The respective recessive Airy functions are
Ai0�z±�, Ai1�z−�, and Ai−1�z+�.

In order to define the appropriate Evans function, we re-
write system �10� as a first-order system. For this we intro-
duce the vector variable Y = �u uy v vy�T and arrive at

dY

dy
= A�y,��Y , �14�

where A�y ,�� is given by

�
0 1 0 0

�+�− y + ��i + �� − 2�w�2� − iB�+ − �+w2 0

0 0 0 1

− �−�w*�2 0 �−�− y − ��i + �� − 2�w�2� iB�−
� ,

with �±= �2±4i��. As y→−	, there are two basis solutions to Eq. �14� which decay. Their asymptotic behavior relates to
Ai0�z� in the following way:

Y1
−�y,�� 
 Y1

	 = e−iB�+y/2
„Ai0�z+� − ��+�1/3Ai0��z

+� − iB�+Ai0�z+� 0 0…T,

Y2
−�y,�� 
 Y2

	 = eiB�−y/2
„0 0 Ai0�z−� − ��−�1/3Ai0��z

−� + iB�−Ai0�z−�…T.

As y→ +	, there are also two basis solutions to Eq. �14� which decay, but in this case the asymptotic behavior relates to
Ai1�z−� and Ai−1�z+�, namely

Y3
+�y,�� 
 Y3

	 = e−iB�+y/2
„Ai−1�z+� − ��+�1/3Ai−1� �z+� − iB�+Ai−1�z+� 0 0…T,

Y4
+�y,�� 
 Y4

	 = eiB�−y/2
„0 0 Ai1�z−� − ��−�1/3Ai1��z

−� + iB�−Ai1�z−�…T.

FIG. 3. z± lines and profile domains �z±�y2� ,z±�y1�� for
fixed �.
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Following �7�, we define an Evans function to be the
Wronskian of these four vector solutions evaluated at the
peak position yp,

Dai��� = �
Y11

− �yp,�� Y21
− �yp,�� Y31

+ �yp,�� Y41
+ �yp,��

Y12
− �yp,�� Y22

− �yp,�� Y32
+ �yp,�� Y42

+ �yp,��
Y13

− �yp,�� Y23
− �yp,�� Y33

+ �yp,�� Y43
+ �yp,��

Y14
− �yp,�� Y24

− �yp,�� Y34
+ �yp,�� Y44

+ �yp,��
� ,

�15�

where Yij
± �i , j=1, . . . ,4� is the j component of Yi

±. Dai��� is
zero if and only if the above basis solutions are linearly
dependent, which happens whenever � is an eigenvalue. z±

are analytic functions of �; the Airy functions are analytic
everywhere in C so that Yi

	 �i=1, . . . ,4� are analytic func-
tions of �. Assuming that Y1

−, Y2
−, Y3

+, and Y4
+ depend analyti-

cally on their initial data Yi
	, we conclude that Dai��� is ana-

lytic in the eigenvalue parameter �. The analyticity permits
the use of the argument principle in searching for eigenval-
ues and so reduces the required work.

For each value of �, the evaluation of Dai��� requires the
numerical computation of the four functions Y1

−, Y2
−, Y3

+, and
Y4

+ at y=yp. Y1
− and Y2

− are computed separately using for-
ward integration of system �14� from y=y1 and using initial
conditions taken from their asymptotic form as y→−	, i.e.,
Y1

	�y1 ,�� and Y2
	�y1 ,��, respectively. These integrations fin-

ish at y=yp, where Y1
−�yp ,�� and Y2

−�yp ,�� are recovered.
Similarly, Y3

+ and Y4
+ are computed separately using back-

ward integration of system �14� from y=y2, with initial con-
ditions Y3

	�y2 ,�� and Y4
	�y2 ,��, until y=yp, where Y3

+�yp ,��
and Y4

+�yp ,�� are recovered. Since system �14� involves the
solution w, Eq. �4� is integrated simultaneously with initial
conditions as found in the shooting method described in Sec.
II.

The search for eigenvalues of Eq. �14� is equivalent to the
search for zeros of Dai���. Dai��� was evaluated as � moves
on closed paths or as � moves along lines where eigenvalues
are suspected to exist. In the former situation, as � moves
along the path, both Dai��� and a continuous function for
arg�Dai���� were evaluated. Then, by the argument principle,
the absolute value of the difference between the initial and
final values of arg�Dai����, when divided by 2�, gives the
number of zeros inside the closed path. In the latter situation,
the eigenvalues are located where Dai=0.

Evaluation of the Evans function as � moves around a
circle of small radius centered on �=0 shows a change in its
argument by 4�. This result asserts multiplicity equal to 2
for the zero eigenvalue, in agreement with observation in
Sec. III. As anticipated by previous stability analysis, the
general spectral properties of Eq. �14� are significantly dif-
ferent for Bs solutions and Bl solutions.

Solutions corresponding to Bs

According to the Evans function results, we can distin-
guish a parameter region, as shown in Fig. 4, where the
solutions w�y� are stable. All the Bs solutions corresponding
to �� ,�� outside this region are unstable. The region of sta-

bility has as lower boundary an existence curve �computed
here for �

3
4�1/3� and as upper boundary another curve �

=�lim���. The two curves meet around �=0.88, so closing
the region. The transition occurring at �=�lim��� is due to a
Hopf bifurcation, i.e., a pair of stable complex eigenvalues
crosses the real axis and emerges in the lower half-plane as
unstable eigenvalues. A further increase in � from the thresh-
old value �lim��� results in increasing the number of unstable
eigenvalues. Moreover, the eigenvalues enter deeper into the
lower half-plane, which implies larger exponential growth of
the corresponding unstable modes.

The procedure to search for unstable eigenvalues has used
the argument principle in a quarter circle that encloses all the
third or the fourth quadrants. Note that the symmetry of the
eigenvalue problem guarantees that all eigenvalues occur in
pairs such as �� ,−�*�. The radius of this quarter circle was
chosen as large as numerically feasible �ranging from 50 to
100� and the neighborhood of the origin was excluded to
avoid the zero of Dai��� at �=0.

From among the stable eigenvalues, we distinguish the
pure positive imaginary eigenvalue of lowest absolute value.
For �=0.08 and �=0.33, this eigenvalue assumes the value
�=0.815i which indicates strong stability, despite the prox-
imity to the curve �= 3

4�1/3, which is the Kodama and Wab-
nitz prediction for the existence boundary �the corresponding
eigenfunction is shown in Fig. 5�. The evaluation of Dai���
as � moves along the positive imaginary axis revealed that,
for � values up to approximately 0.6, this eigenvalue moves
down to the origin as � decreases towards the existence
boundary �curve ��� in Fig. 4�. For � small ���0.05�, this
eigenvalue eventually merges with the repeated zero eigen-
value, emerging as an unstable eigenvalue of the Bl family as
explained below.

Whenever an eigenvalue, denoted by �*, is found, its
eigenfunction Y = �u uy v vy�T may also be computed. For �
=�*, Y1

−, Y2
−, Y3

+, and Y4
+ are linearly dependent, namely

FIG. 4. Boundaries of existence and stability in the �� ,�� plane
for Bs solutions. The lower curve ��� is the existence limit and the
upper curve �=�lim��� �denoted �� is the stability limit obtained
by the Evans function method. The dotted curve represents �

= 3
4�1/3.
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a1Y1
− + a2Y2

− = a3,Y3
+ + a4Y4

+.

The vector �a1 a2 −a3 −a�T can be obtained by singular
value decomposition of Dai��*� and then used to construct Y
from the above-computed functions.

Apart from the eigenfunction associated with �=0, which
coincides with w�y�, we generally found two more localized
eigenfunctions similar to those in Fig. 5, belonging to the
two lowest pure imaginary �positive imaginary� eigenvalues.
Another type of eigenfunction is not localized within the
profile domain and arises when the eigenvalues belong to the
cluster of complex eigenvalues responsible for the loss of
stability at the upper curve of Fig. 4. One example of this
type is shown in Fig. 6. The fact that these eigenfunctions are
not localized within the profile domain causes the modes to
be radiationlike. Nevertheless, they should eventually decay
to the left as they behave like the recessive Airy function of
the corresponding sector.

The upper limit of stability determined using the Evans
function method should correspond to the limit found experi-

mentally and numerically in 1994 by Mamyshev and Mol-
lenauer �2�. They described this as an upper energy limit
above which nonsolitonic components are not completely re-
moved by the sliding filtering. The stability boundary found
here is an upper limit for �. For fixed �, as � increases, both
the peak amplitude and energy increase, which confirms the
correspondence between our boundary shown in Fig. 4 and
the Mamyshev limit. Since 1994, the same stability limit has
been analytically estimated using two different perturbation
techniques �4,5�. Both works attributed the loss of stability to
the growth of dispersive radiation. Likewise, the Evans func-
tion method, applied here, predicts the loss of stability when-
ever a radiationlike mode crosses the real axis and becomes
unstable.

Solutions corresponding to Bl

As pointed out in Sec. II, there are two types of Bl solu-
tions, one more symmetrical occurring for smaller values of
� and another significantly asymmetrical existing for larger
values of �. The Evans function method can be applied to
study the stability of the former type, however, in general,
this method cannot be applied to the asymmetric type since
the backward integration of Eq. �4� from the corresponding
y2 is not numerically feasible. Whenever applied, the Evans
method revealed one pure negative imaginary eigenvalue for
all the solutions of the first kind, which confirms the unstable
classification given by the perturbation technique �3� to Bl
solutions. This unstable eigenvalue �u was found to be con-
fined to a portion of the negative imaginary axis, i.e., �u=
−�i with 0���1.47. The eigenvalue takes the limit value
�u=0 at the boundary �� 3

4�1/3, and as � is increased and �
fixed, it moves toward −1.47i. Then, if � is further increased,
the eigenvalue reverses its direction. Nevertheless, the upper
� limit is always reached before �u comes close to zero
again. Figure 7 shows one example of those unstable modes.

V. DIRECT NUMERICAL INTEGRATION

To confirm the regime of accelerating pulses and the sta-
bility results, the numerical simulation of the evolution equa-

FIG. 5. Perturbation r�0,y� built from the eigenfunction �u v�T

corresponding to �=0.815i for the Bs solution with �=0.08 and
�=0.33.

FIG. 6. Perturbation r�0,y� built from the eigenfunction �u v�T

corresponding to �= ±6.24−�i for the Bs solution with �=0.5 and
�=0.93.

FIG. 7. Perturbation r�0,y� built from the eigenfunction �u v�T

corresponding to �=−0.717i for the Bl solution with �=0.08 and
�=0.33.
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tion �1� was performed using the self-similar pulses as initial
conditions. The numerical integration of Eq. �1� confirmed
the location of the upper stability boundary �=�lim���. For
���lim���, the peak amplitude undergoes oscillations
whose period is in agreement with the eigenvalue that
crosses the real axis at this boundary. For example, the pe-
riod of oscillation shown in the inset of Fig. 8�a� is T
�6.34 and the crossing eigenvalue for these values of � and
� is �= ±6.24, confirming the predicted relation T=2� /��
�note that �=0.05 and consequently �=0.159�. These oscil-
lations are decaying if � is slightly below the boundary and
growing otherwise �Fig. 8�b��. Whenever the propagation is
stable, the trajectory is in good agreement with the predicted
parabolic path T=T0−bZ−�Z2 /2.

Direct numerical integration revealed severe instability of
the asymmetrical Bl solutions shown by the example in Fig.
2�b� and confirmed the instability of the symmetrical Bl so-
lutions �example in Fig. 2�a�� as predicted by the Evans
method. Figure 9 shows the peak amplitude evolution for
two symmetrical Bl solutions where the typical decaying be-
havior is present. Note that the solution corresponding to
larger � has a more rapid decay. The estimated growth rate
of the unstable modes is ��, which gives 0.032 for the
�=0.33 solution and 0.073 for the �=0.39 solution.

VI. CONCLUSION

We found equilibrium solutions for the sliding filtering
model described by Eq. �1� for a wide range of filter strength
values �� ranging up to 2.0� using an accelerating similarity
variable reduction. In general, for each choice of parameters,
there are two equilibrium solutions which differ in velocity
and peak amplitude. The stability of such solutions was then
studied using the Evans method, which has been recently
adapted to accelerating solutions. The low peak amplitude
solutions which correspond to larger velocity modulus �Bl
solutions� were found unstable. For small �, the stability
analysis was performed by the Evans method but for larger �
the instability was only recognized by full numerical integra-
tion of Eq. �1� using the equilibrium solutions as initial con-
dition. Using the Evans method, we were also able to distin-
guish a parameter region where the high peak amplitude
solutions �Bs solutions� are stable. For fixed filter strength �
and sliding rate �, the loss of stability occurs for an upper
limit of excess gain � and is due to a Hopf bifurcation. The
stability threshold and the type of eigenvalues/eigenfunctions
responsible for the stability transition is in agreement with
previously published results. The value of those transition
eigenvalues can actually be found by the Evans method, thus
we can predict the frequency of the peak amplitude oscilla-
tions exhibited by the pulse along the propagation distance.
Below the � threshold, i.e., within the stability region, those
amplitude oscillations are decaying, but otherwise they grow.
Full numerical integration of the evolution equation was also
performed which has confirmed those stability results. Note
that, for practical purposes, for each � and �, the stability
limits in � �as shown in Fig. 4 for generic �� may be readily
converted to lower and upper limits in pulse power. More-
over, our technique for finding the equilibrium solutions pre-
dicts the actual width and the existence of possible secondary
humps which can be valuable in order to prevent interaction
between adjacent pulses.
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FIG. 8. Peak amplitude evolution of an initial pulse correspond-
ing to �=0.5, �=0.05, B=Bs, and �a� �=0.93, �b� �=0.95. Inset in
�a� shows the period of oscillation. Note that �lim�0.5��0.927.

FIG. 9. Evolution of peak amplitude for two Bl solutions with
�=0.08, �=0.33,0.39, and �=0.05.
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